If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x^2 = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
x^2+1/(x^2) = 31/9 // - 31/9
x^2+1/(x^2)-(31/9) = 0
x^2+1/(x^2)-31/9 = 0
x^2+x^-2-31/9 = 0
t_1 = x^2
1*t_1^1+1*t_1^-1-31/9 = 0
1*t_1^1+1*t_1^-1-31/9*t_1^0 = 0
(1*t_1^2-31/9*t_1^1+1*t_1^0)/(t_1^1) = 0 // * t_1^2
t_1^1*(1*t_1^2-31/9*t_1^1+1*t_1^0) = 0
t_1^1
t_1^2+(-31/9)*t_1+1 = 0
t_1^2+(-31/9)*t_1+1 = 0
DELTA = (-31/9)^2-(1*1*4)
DELTA = 637/81
DELTA > 0
t_1 = ((637/81)^(1/2)-(-31/9))/(1*2) or t_1 = (-(-31/9)-(637/81)^(1/2))/(1*2)
t_1 = ((637/81)^(1/2)+31/9)/2 or t_1 = (31/9-(637/81)^(1/2))/2
t_1 in { (31/9-(637/81)^(1/2))/2, ((637/81)^(1/2)+31/9)/2}
t_1 = (31/9-(637/81)^(1/2))/2
x^2-((31/9-(637/81)^(1/2))/2) = 0
1*x^2 = (31/9-(637/81)^(1/2))/2 // : 1
x^2 = (31/9-(637/81)^(1/2))/2
x^2 = (31/9-(637/81)^(1/2))/2 // ^ 1/2
abs(x) = ((31/9-(637/81)^(1/2))^(1/2))/(2^(1/2))
x = ((31/9-(637/81)^(1/2))^(1/2))/(2^(1/2)) or x = -(((31/9-(637/81)^(1/2))^(1/2))/(2^(1/2)))
t_1 = ((637/81)^(1/2)+31/9)/2
x^2-(((637/81)^(1/2)+31/9)/2) = 0
1*x^2 = ((637/81)^(1/2)+31/9)/2 // : 1
x^2 = ((637/81)^(1/2)+31/9)/2
x^2 = ((637/81)^(1/2)+31/9)/2 // ^ 1/2
abs(x) = (((637/81)^(1/2)+31/9)^(1/2))/(2^(1/2))
x = (((637/81)^(1/2)+31/9)^(1/2))/(2^(1/2)) or x = -((((637/81)^(1/2)+31/9)^(1/2))/(2^(1/2)))
x in { ((31/9-(637/81)^(1/2))^(1/2))/(2^(1/2)), -(((31/9-(637/81)^(1/2))^(1/2))/(2^(1/2))), (((637/81)^(1/2)+31/9)^(1/2))/(2^(1/2)), -((((637/81)^(1/2)+31/9)^(1/2))/(2^(1/2))) }
| (x^2-x)(x^2-2)=0 | | 2(200-2*2)= | | 12=2(x-5) | | x-1=y+10 | | 9(x+4)=72 | | (x*x)+(1/(x*x))=31/9 | | 68=6x+2 | | 2(x-3)+1=3x+4 | | 2x+28=11x-21 | | 750/24 | | (x-6)/3=9 | | 3x^2+x=11x | | f(x)=2+54 | | 40Q^2/Q | | 15x/18=10 | | 2x+12=4/5x | | 8y-12y+10=6+2y+36 | | 11(x^2+1)=122x | | x^3+5x^2-28=0 | | 40Q/Q | | x^3-5x^2-28=0 | | (x-4)/8=7 | | 3p=-240 | | V=(3.14)5x^2*6 | | (2x-3)/15=5 | | 2(3x+3)=3(2x+3) | | 20x/8=30 | | 4x-4/3=12 | | 5+1/7x=6 | | 5x-7=3x-15 | | 5+0.14x=6 | | 9x-63y+9= |